C2C3 C3C4 C4N5 N5C6 C6C7	1.393 (2) 1.390 (2) 1.345 (1) 1.324 (1) 1.485 (1)	C9-C10 C10-C11 C11-C12 C12C13 C13O14	1.382 (2) 1.391 (2) 1.380 (2) 1.496 (1) 1.213 (1)
C2C1C6 C2C1C13 C6C1C13 C1C2C3 C4C3C2 N5C4C3 C6N5C4 N5C6C1 N5C6C7 C1C6C7	119.67 (9) 131.72 (9) 108.61 (8) 116.21 (10) 119.88 (10) 124.30 (10) 114.95 (9) 124.99 (9) 126.27 (8) 108.73 (8)	C12C7C6 C7N8C9 N8C9C10 C9C10C11 C12C11C10 C11C12C7 C11C12C13 C7C12C13 O14C13C12	108.48 (8) 114.09 (9) 124.98 (10) 119.82 (10) 116.30 (10) 119.53 (9) 131.70 (9) 108.77 (8) 127.81 (10) 126.79 (10)
N8C7C12 N8C7C6	125.25 (9) 126.27 (8)	C1C13C12	105.40 (7)

All the H atoms were located from difference Fourier maps and refined isotropically.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976), SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government and the Universiti Sains Malaysia for research grant R&D No. 123-3417-2201, and the State Science and Technology Commission, National Nature Science Foundation of China, for a grant for a Key Research Project. One of the authors (KS) thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AS1169). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Baxter, P. N. W., Connor, J. A., Wallis, J. D., Povey, D. C. & Powell, A. K. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1601–1605.
- Eckhard, I. F. & Summers, L. A. (1973). Aust. J. Chem. 26, 2727-2728.
- Grigg, R., Mongkolaussavaratana, T., Pounds, C. A. & Sivagnanam, S. (1990). Tetrahedron Lett. 31, 7215–7218.
- Henderson, L. J. Jr, Fronczek, F. R. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876–5879.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

p-Dimethylaminobenzaldehyde 4,5-Diaza-9fluorenylidenehydrazone Monohydrate

ZHONG-LIN LU, CHUN-YING DUAN, YU-PENG TIAN AND XIAO-ZENG YOU

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Centre for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

HOONG-KUN FUN AND KANDASAMY SIVAKUMAR[†]

X-ray Crystallography Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

(Received 2 February 1995; accepted 27 March 1995)

Abstract

The X-ray analysis reveals that the title compound, $C_{20}H_{17}N_5.H_2O$, is an electron-delocalized planar molecule. The molecules are stacked as non-bonding dimeric pairs about the crystallographic inversion centre in the crystal lattice. The lone water molecule present in the unit cell is hydrogen bonded to both N atoms in the diazafluorene moiety.

Comment

Recently, nonlinear optical organic materials have aroused considerable interest as a result of their wide application in science and technology (Chemla & Zyss, 1987). Schiff base compounds having extensively conjugated π -electron systems have been reported to display second harmonic generations (Houlton *et al.*, 1992; Velavan, Sivakumar & Anbu, 1995). The title compound, (C₁₀H₆N₂)C=N-N=CH(C₆H₄)N(CH₃)₂.H₂O, (I), is a Schiff base derivative; this crystal structure determination forms part of our search for and study of new materials for nonlinear optical applications.

An ORTEPII (Johnson, 1976) plot of the molecule with atom-numbering scheme is shown in Fig. 1. The bond lengths and angles observed in this structure show

[†] On leave from: Department of Physics, Anna University, Madras 600 025, India.

that the molecule has a highly conjugated π system. This is also supported by the almost complete planarity of the molecule. The dihedral angle between the planes of the phenyl and diazafluorene fragments is $3.73(5)^{\circ}$: the two fragments make angles of 2.1(1) and $5.4(1)^{\circ}$ with the plane of the central hydrazone linkage. In the diazafluorene moiety, C2 deviates by a maximum of 0.042 (3) Å from the mean plane and the dimethylamino group is tilted by $7.0(2)^{\circ}$ from the plane of the phenyl ring. The short C20-N23 bond length, 1.368 (3) Å, reflects the partial double-bond nature of this bond, which is in consistent with the electron delocalization in the whole molecule.

Fig. 1. Structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

The water molecule present in this structure also lies in the same plane of the molecule and deviates by 0.055 (2) Å from the best plane of the diazafluorene moiety. The position of the water molecule means it can form hydrogen bonds with both N atoms of the pyridine moieties: O1W···N1 2.938 (3), O1W···N8 3.047 (3) Å. It should be noted that the N atoms in diazafluorene structures are always involved in O-H···N hydrogen bonds, even though more negative carbonyl O atoms are present in the structure (Baxter, Connor, Wallis, Povey & Powell, 1992). For these two N atoms, the charge concentration is greater on one (N1 in this case) than the other, which is justified by the shorter donoracceptor distance $O1W \cdots N1$. This is also observed in the structure of 4,5-diazafluoren-9-one, where only one N atom is involved in a C— $H \cdot \cdot \cdot N$ hydrogen bond (Fun, Sivakumar, Zhu & You, 1995).

In the crystal lattice, the molecules exist as nonbonding dimers about the crystallographic inversion centre. These planar molecules pack in two individual parallel layers; the dihedral angle between these two layers is equal to β^* (66.4°). No second harmonic generation was observed in this compound owing to its centrosymmetric solid-state structure.

Experimental

The synthesis of the compound was carried out by refluxing 4,5-diazafluorene-9-hydrazine and dimethylaminobenzaldehyde in ethanol solution for 3 h. Single crystals were obtained by recrystallization from ethanol.

Crystal data

$C_{20}H_{17}N_5.H_2O$	Mo $K\alpha$ radiation
$M_r = 345.40$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
C_2/c	reflections
a = 18.250(4) Å	$\theta = 8-22.5^{\circ}$
b = 16.424(4) Å	$\mu = 0.086 \text{ mm}^{-1}$
c = 12.639(2) Å	T = 293 (2) K
$\beta = 113.56(2)^{\circ}$	Prism
$V = 3472.6(13) \text{ Å}^3$	$0.44 \times 0.22 \times 0.18 \text{ mm}$
Z = 8	Red
$D_x = 1.321 \text{ Mg m}^{-3}$	

Data collection

и

(

NI

C2 C3

C4

C5

C6 **C**7

N8

C9

C10 **C**11

C12

C13 N14

N15 C16 C17

C18

C19

C20 C21

C22

N23

Siemens P4 diffractometer	$\theta_{\rm max} = 22.5^{\circ}$
$\theta/2\theta$ scans	$h = -1 \rightarrow 19$
Absorption correction:	$k = -1 \rightarrow 17$
none	$l = -13 \rightarrow 12$
2750 measured reflections	3 standard reflections
2275 independent reflections	monitored every 100
1435 observed reflections	reflections
$[I > 2\sigma(I)]$	intensity decay: <3%
$R_{\rm int} = 0.0437$	

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.165 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.0399	$\Delta \rho_{\rm min} = -0.158 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0914$	Extinction correction:
S = 1.066	SHELXL93 (Sheldrick,
2275 reflections	1993)
312 parameters	Extinction coefficient:
All H-atom parameters	0.0021 (3)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0490P)^2]$	from International Tables
where $P = (F_o^2 + 2F_c^2)/3$	for Crystallography (1992
$(\Delta/\sigma)_{\rm max} < 0.001$	Vol. C, Tables 4.2.6.8 and
	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
x	у	z	U_{eq}	
0.25495 (12)	0.13231 (13)	0.4032 (2)	0.0501 (6	
0.1862 (2)	0.1660 (2)	0.3988 (3)	0.0545 (8	
0.1108 (2)	0.1390 (2)	0.3289 (2)	0.0523 (8	
0.1017 (2)	0.0714 (2)	0.2590 (2)	0.0457 (7	
0.17091 (13)	0.03367 (14)	0.2633 (2)	0.0387 (6	
0.24517 (13)	0.06764 (14)	0.3355 (2)	0.0412 (6	
0.30884 (14)	0.01804 (14)	0.3234 (2)	0.0422 (7)	
0.38840 (12)	0.02996 (13)	0.3776 (2)	0.0514 (6)	
0.4326 (2)	-0.0262 (2)	0.3520 (3)	0.0566 (8)	
0.4028 (2)	-0.0909 (2)	0.2787 (3)	0.0568 (8)	
0.3208 (2)	-0.1017 (2)	0.2240 (3)	0.0536 (8)	
0.27360 (13)	-0.04604 (15)	0.2480 (2)	0.0413 (6)	
0.18568 (14)	-0.03935 (15)	0.2089 (2)	0.0416 (6)	
0.14003 (12)	-0.09514 (13)	0.1427 (2)	0.0503 (6)	
0.05854 (12)	-0.08287 (13)	0.1156 (2)	0.0518 (6)	
0.0172 (2)	-0.1423 (2)	0.0525 (2)	0.0459 (7)	
-0.06909 (14)	-0.14622 (14)	0.0102 (2)	0.0434 (6)	
-0.1150 (2)	-0.0877 (2)	0.0345 (2)	0.0502 (7)	
-0.1964 (2)	-0.0927 (2)	-0.0092 (2)	0.0495 (7)	
-0.23795 (15)	-0.15725 (15)	-0.0830 (2)	0.0428 (7)	
-0.1915 (2)	-0.21629 (15)	-0.1075 (2)	0.0462 (7)	
-0.1097 (2)	-0.2109 (2)	-0.0616 (2)	0.0476 (7)	
-0.31965 (12)	-0.16060 (13)	-0.1301 (2)	0.0529 (6)	

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C24	-0.3665 (2)	-0.1059 (2)	-0.0931 (4)	0.0673 (9
	C25	-0.3621 (2)	-0.2250 (2)	-0.2097 (3)	0.0683 (1
	O1W	0.42272 (15)	0.17651 (14)	0.5381 (2)	0.0772 (7

Table 2. Selected geometric parameters (Å, °)

Tuble 210.		F	
N1—C6	1.331 (3)	C12—C13	1.482 (3)
N1-C2	1.352 (3)	C13—N14	1.295 (3)
C2—C3	1.377 (4)	N14—N15	1.401 (3)
C3—C4	1.387 (4)	N15-C16	1.295 (3)
C4C5	1.388 (3)	C16-C17	1.448 (4)
C5—C6	1.411 (3)	C17—C18	1.387 (3)
C5-C13	1.460 (3)	C17—C22	1.401 (3)
C6—C7	1.476 (3)	C18-C19	1.366 (4)
C7—N8	1.349 (3)	C19-C20	1.415 (3)
C7—C12	1.393 (3)	C20-N23	1.368 (3)
N8—C9	1.346 (3)	C20-C21	1.402 (3)
С9—С10	1.372 (4)	C21—C22	1.371 (4)
C10—C11	1.387 (4)	N23—C24	1.442 (4)
C11—C12	1.370 (3)	N23-C25	1.451 (4)
C6-N1-C2	114.6 (2)	C11-C12-C7	119.8 (2)
N1—C2—C3	124.6 (3)	C11—C12—C13	131.9 (2)
C2—C3—C4	120.0 (3)	C7-C12-C13	108.3 (2)
C3C4C5	117.2 (2)	N14C13C5	133.9 (2)
C4C5C6	118.2 (2)	N14-C13-C12	119.6 (2)
C4—C5—C13	133.2 (2)	C5-C13-C12	106.4 (2)
C6-C5-C13	108.6 (2)	C13—N14—N15	113.7 (2)
N1-C6-C5	125.4 (2)	C16-N15-N14	110.0 (2)
N1-C6-C7	126.7 (2)	N15-C16-C17	122.7 (3)
C5C6C7	107.9 (2)	C18—C17—C16	123.4 (2)
N8—C7—C12	124.5 (2)	C22—C17—C16	119.3 (2)
N8—C7—C6	126.8 (2)	N23-C20-C21	121.8 (2)
C12—C7—C6	108.7 (2)	N23-C20-C19	121.4 (2)
C9-N8-C7	113.9 (2)	C20-N23-C24	121.2 (2)
N8-C9-C10	125.4 (3)	C20-N23-C25	121.2 (3)
C9-C10-C11	119.6 (3)	C24—N23—C25	117.2 (3)
C12-C11-C10	116.9 (3)		

All the H atoms were located from difference Fourier maps and refined isotropically.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SIR92 (Altomare *et al.*, 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976), SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government and the Universiti Sains Malaysia for research grant R&D No. 123-3417-2201, and the State Science and Technology Commission, National Nature Science Foundation of China, for a grant for a Key Research Project. One of the authors (KS) thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: AS1177). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435– 436.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Baxter, P. N. W., Connor, J. A., Wallis, J. D., Povey, D. C. & Powell, A. K. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1601–1605.
 - Chemla, D. S. & Zyss, J. (1987). Editors. Nonlinear Optical Properties of Organic Molecules and Crystals. Vols I & II. Orlando: Academic Press.
 - Fun, H.-K., Sivakumar, K., Zhu, D.-R. & You, X.-Z. (1995). Acta Cryst. C51, 2076-2078.
 - Houlton, A., Jasim, N., Roberts, R. M. G., Silver, J., Cunningham, D., McArdle, P. & Higgins, T. (1992). J. Chem. Soc. Dalton Trans. pp. 2235–2241.
 - Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
 - Nardelli, M. (1983). Comput. Chem. 7, 95-98.
 - Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Sicmens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 - Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
 - Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 - Velavan, R., Sivakumar, K. & Anbu, M. (1995). Acta Cryst. C51, 1227-1229.

Acta Cryst. (1995). C51, 2080-2083

Benzyl 3-(4-Dimethylaminobenzylidene)dithiocarbazate

Hoong-Kun Fun, Kandasamy Sivakumar† and Boon-Chuan Yip

X-ray Crystallography Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

YU-PENG TIAN, CHUN-YING DUAN, ZHONG-LIN LU AND XIAO-ZENG YOU

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Centre for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

(Received 2 February 1995; accepted 29 March 1995)

Abstract

The title Schiff base compound, $C_{17}H_{19}N_3S_2$, crystallizes in the triclinic system with two molecules in the asymmetric unit. The dimethylaminophenyl and carbazate parts of the molecule lie in one plane, perpendicular to the plane of the S-benzyl group. One of the two molecules in the asymmetric unit displays lateral disorder of the S-benzyl group. The molecular packing is

[†] On leave from: Department of Physics, Anna University, Madras 600 025, India.